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Tunable metamaterial beam using
negative capacitor for local resonators
coupling
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Abstract
This article presents a theoretical study of a tunable metamaterial beam for low-frequency broadband vibration suppres-
sion. First, the mechanism of employing the shunt circuit technique to realize the internal coupling between two adjacent
local resonators is introduced. The working principle of the proposed metamaterial beam by integrating the shunt circuit
technique is demonstrated. The stability of the proposed metamaterial beam is then analysed, and the corresponding cri-
terion is proposed. Subsequently, analytical models of the proposed metamaterial beam are developed. The band struc-
tures and the transmittances are calculated. The analytical study demonstrates the generation of multiple band gaps
using a shunt negative capacitance circuit, which is equivalent to a coupling spring. A parametric study is conducted to
investigate the effect of the equivalent coupling stiffness on the band gaps and the corresponding suppression regions. It
is found that the band gaps are controllable by varying the equivalent coupling stiffness. Finally, to verify the analytical
solutions, a finite-element model of the proposed metamaterial beam is developed. The simulation results confirm the
existence of multiple band gaps, which are tunable through modification of the negative capacitance. The broadband
vibration-suppression ability of the proposed metamaterial beam is thus confirmed.
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1. Introduction

Similar to Bragg scattering of phononic crystals, elastic
metamaterials with artificial micro-structures (i.e.
embedded local resonators) can generate band gaps
within which waves are restricted from propagation.
One notable advantage of the local resonance–based
elastic metamaterials is that their band gaps are directly
related to the frequency of the local resonator, that is,
irrelevant to the periodic constant. Consequently, the
design of low-frequency band gaps in elastic metama-
terials becomes physically easy to achieve by tuning the
local resonators. Due to this fact, the application of
elastic metamaterials for low-frequency vibration sup-
pression has attracted numerous research interests in
recent years (Banerjee et al., 2017; Chen et al., 2016;
Cheng et al., 2013; Cheng and Shi, 2014; Hu et al.,
2017b; Li et al., 2018; Liu et al., 2007; Zhu et al., 2014).

Although elastic metamaterials have the advantage
of achieving low-frequency band gaps, the widths of
band gaps of elastic metamaterials are usually relatively
narrow. This significantly limits the application of elas-
tic metamaterials in the circumstances where vibrations
exist over a broadband spectrum. To address this issue,

various methods have been proposed by researchers to
broaden the width of band gaps of elastic metamater-
ials. Starting from the local resonance mechanism for
band gap generation, efforts have been devoted to
introducing multiple local resonances for generating
multiple band gaps in elastic metamaterials, such as
integration of multiple degree-of-freedom local resona-
tors (Huang and Sun, 2010; Xiao et al., 2012), utiliza-
tion of multiple resonators with different natural
frequencies (Zhu et al., 2014), and implementation of
internal couplings between local resonators through
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spring connections (Hu et al., 2017b, 2018b). Recently,
applying nonlinearity has been proposed to improve
the band gap characteristics of linear metamaterial sys-
tems (Fang et al., 2016, 2017; Khajehtourian and
Hussein, 2014; Lazarov and Jensen, 2007). As reported
and explained by Fang et al. (2017), the introduction of
nonlinearity can enable metamaterials to obtain new
band gaps based on the mechanism of chaos.

Design of metamaterials with actively tunable band
gaps is also an effective strategy for realizing the broad-
band vibration-suppression purpose. Chen et al. (2013)
presented a metamaterial plate with piezoelectric
patches shunted to resistive–inductive circuits. The
plate has not only Bragg scattering–based band gaps
but also a local resonance–based band gap. The results
indicated that by manipulating the shunt resistive–
inductive circuits, both Bragg scattering and local reso-
nant band gaps were controllable. Based on a similar
idea, Hu et al. (2017a) conducted a theoretical study of
metamaterials with piezoelectric elements. According to
their research, the metamaterial can realize broadband
vibration suppression in strong coupling conditions by
tuning the shunt resistance. Chen et al. (2014) proposed
a band gap control method using piezoelectric elements
as active springs. They shunted the piezoelectric ele-
ments to negative capacitance (NC) circuits. The effec-
tive stiffness of the piezoelectric element is controllable
via the value of NC shunts; thus, the characteristics of
the band gap can be changed accordingly. Zhu et al.
(2016) then experimentally realized the idea presented
in Chen et al. (2014). Li et al. (2018) designed a self-
adaptive metamaterial beam with piezoelectric resona-
tors. A feedback digital circuit is used to control the
effective stiffness of the piezoelectric resonators, thus
adaptively tuning the band gaps according to the input
excitation. Additional related research can be found in
studies of Chen et al. (2011, 2017), Thorp et al. (2001),
Wang and Chen (2015), Xu and Tang (2017), Zhang
et al. (2015), and Zhou et al. (2015). Besides the piezo-
electric shunt technique, it is worth mentioning that the
tunability or reconfigurability in electromagnetic meta-
materials (Hand and Cummer, 2007; Liu and Padilla,
2013) utilizing microelectromechanical systems
(MEMS) could also inspire the development of band
gap tuneable acoustic–elastic metamaterials, which
could be another promising way to realize the broad-
band vibration suppression.

Due to the simple implementation and electrical–
mechanical transformation characteristics, the piezo-
electric shunt technique has attracted numerous
research interests for developing active tunable meta-
materials in recent years. However, previous studies
(Chen et al., 2011, 2013, 2014; Hu et al., 2017a; Thorp
et al., 2001; Wang and Chen, 2015; Xu and Tang, 2017;
Zhang et al., 2015; Zhou et al., 2015; Zhu et al., 2016)
employed independent piezoelectric shunt circuits for
each local resonator. In this article, we present the

design of a piezoelectric metamaterial beam in which
the two adjacent local resonators are coupled through
a shunt capacitance circuit, which is equivalent to a
coupling spring. The advantages of this design is that
the employment of the piezoelectric shunt technique
not only realizes the tunability but also provides a
mechanism for generating multiple band gaps.
Therefore, the proposed design yields broadband
vibration-suppression ability.

The article is organized as follows: in section 2, the
mechanism of the internal coupling realized by the
shunt capacitance circuit is introduced, and an expres-
sion for the equivalent coupling stiffness is derived. The
working principle of the proposed piezoelectric meta-
material beam is explained, and the stability of the sys-
tem is analysed. In section 3, the analytical model of the
proposed piezoelectric metamaterial beam is developed
and the dispersion relation is derived under the assump-
tion of being periodically infinitely long. A parametric
study is then performed to investigate the effect of the
shunt capacitance circuit technique–induced coupling
on the band gaps. Subsequently, in section 4, a finitely
long model is also developed, and the analytical expres-
sion of the transmittance is obtained. The predicted
band gaps correspond to suppression regions in the
transmittance diagrams. The effect of the coupling
caused by the shunt capacitance circuit technique on
the transmittance is explained using the complex band
structures. Finally, in section 6, to verify the analytical
solutions, an equivalent finite-element (FE) model is
developed using the commercial software COMSOL.
The broadband suppression ability of the proposed
piezoelectric metamaterial beam is established by the
FE analysis.

2. Shunt capacitance circuit technique

In this section, we use the 2-degree-of-freedom (2DOF)
oscillating system (as shown in Figure 1) to explain the
mechanism of the shunt capacitance circuit technique.
Figure 1 shows two types of connection of the shunt cir-
cuit, that is, forward connection and reverse connec-
tion. The poling orientations of the left- and right-hand
side piezoelectric transducers made of Lead zirconate
ttanate (PZT) ceramics are assumed to be in the same
direction (i.e. from the bottom electrode to the top elec-
trode). For the forward connection configuration, the
top/bottom surfaces of the left-side PZT are connected
to the top/bottom surfaces of the right-side counterpart.
For the reverse connection configuration, the top/bot-
tom surfaces of the two PZTs are reversely connected.
For both configurations, a negative capacitor Cn is con-
nected to the two PZTs in parallel.

The derivation processes of the two configurations
are the same, and the conclusions are similar. The cir-
cuit connection difference between the two
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configurations will only result in an opposite sign in the
final expression of the equivalent coupling stiffness.
Indeed, one can realize the same functionality by either
the forward or the reverse connection configurations
with different capacitance tuning strategies. The follow-
ing study only concentrates on the reverse connection
configuration, as when there is no external capacitance,
it behaves like a normal spring with positive stiffness
which is easier to interpret as an equivalent mechanical
system. The governing equations of motions of the two
oscillators in the mechanical domain can be written as

m1€u1 tð Þ+ c1 _u1 tð Þ+ k1u1 tð Þ+ u1vp1 tð Þ=� m1€y1 tð Þ
m2€u2 tð Þ+ c2 _u2 tð Þ+ k2u2 tð Þ+ u2vp2 tð Þ=� m2€y2 tð Þ

�
ð1Þ

where m1 and m2 are the masses of the left- and right-
hand side oscillators, respectively. k1 and k2 are the
stiffness constants. c1 and c2 are the damping coeffi-
cients. u1(t) and u2(t) are the relative displacements of
the two oscillators with respect to the host structure. u1

and u2 are the electromechanical coupling coefficients.
vp1(t) and vp2(t) are the voltages across the two PZTs,
respectively. y1(t) and y2(t) are the base excitation dis-
placements for the left-hand-side and the right-hand-
side oscillators, respectively. The electrical domain gov-
erning equations of the two PZTs are

ip1 tð Þ+Cp1 _vp1 tð Þ � u1 _u1 tð Þ= 0

ip2 tð Þ+Cp2 _vp2 tð Þ � u2 _u2 tð Þ= 0

�
ð2Þ

where Cp1 and Cp2 are the clamped capacitances of the
two piezoelectric transducers. ip1(t) and ip2(t) are the
currents flowing out of the two piezoelectric transdu-
cers. As the two PZTs are reversely connected, the vol-
tages across the two PZTs have the same magnitudes
but opposite signs. In addition, considering the rela-
tionship between the voltage across the parallel-
connected capacitance Cn and the total current flowing
into Cn yields

vp1 tð Þ=� vp2 tð Þ=
Ð

ip1 tð Þ � ip2 tð Þ
� �

dt

Cn

ð3Þ

2.1. Synthetic NC

The NC can be realized by the synthetic circuit (Ji
et al., 2011) as shown in Figure 2. The operational
amplifier (op-amp) that constitutes the synthetic circuit
plays the key role for the realization of the NC. Based
on the characteristics of an ideal op-amp, one can
derive that the equivalent capacitance of this synthetic
circuit equals to

CSynthetic =�
R2

R1

CReal ð4Þ

It can be seen that the equivalent capacitance is
dependent on the ratio of R2=R1, which enables the ease
of tuning the equivalent capacitance value. In the phys-
ical implementation, due to the non-idealities of

Figure 1. Schematics of 2DOF oscillating systems with negative capacitance shunted PZTs: (a) forward connection and (b) reverse
connection configurations.
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practical op-amps, the synthesis of op-amp circuit
would unavoidably introduce undesired noise and addi-
tional parasitic elements. Fortunately, the excessive
noise and additional parasitic elements besides the NC
are usually negligible in the shunt circuits. First, the
excessive noise from the circuit is negligible compared
to the output of the shunts. For example, one of the
commonly adopted op-amps for piezoelectric transdu-
cers, OPA445 (2008), has voltage noise of
15� 20 nV=

ffiffiffiffiffiffiffi
Hz
p

in the frequency range of 100 Hz–
100 kHz. Since the outputs of the NC shunt circuits are
in the level of several volts, the noise from the op-amp
is indeed negligible. Second, in practical applications,
only minor resistive load besides the NC would be
included in the shunt synthetic circuit (Zhu et al.,
2016). The theoretical NC circuit can usually be reason-
ably deemed as a pure capacitive one without addi-
tional parasitic elements (De Marneffe and Preumont,
2008; Ji et al., 2011; Tang and Wang, 2001). In other
words, no additional parasitic elements besides the NC
need to be taken into account in the theoretical model-
ling and simulations of the NC synthetic circuit.

2.2. Equivalent circuit representation

Using the mechanical–electrical coupled analogies, the
2DOF oscillating system with PZTs can be represented
by an equivalent electrical system as shown in Figure 3.
The mechanical parameters are correspondingly con-
verted into the electrical parameters as follows

L1 =
m1

u2
1

, L2 =
m2

u2
2

, R1 =
c1

u2
1

, R2 =
c2

u2
2

C1 =
u2

1

k1

, C2 =
u2

2

k2

, V1 =�
m1

u1

€y1 tð Þ, V2 =�
m2

u2

€y2 tð Þ

i1 tð Þ= u1 _u1 tð Þ, i2 tð Þ= u2 _u2 tð Þ
ð5Þ

It should be noted that Cp1, Cp2, and Cn are con-
nected in parallel. Consequently, we can replace Cp1,
Cp2, and Cn by an equivalent capacitance CT . After the
replacement, the electrical system, shown in Figure 3,
can be simplified into a system shown in Figure 4. A
typical definition of capacitance is the ratio of the
change in the electric charge to the corresponding
change in the electric potential. According to this defi-
nition, when the current flows out of the capacitor, if
CT .0, the voltage across the capacitor decreases; if
CT\0, the voltage across the capacitor increases.
Recalling the electrical–mechanical analogies (i.e. cur-
rent$ velocity; charge$ displacement; and voltage$
force), the path consisting of L1-R1-C1 and the path
consisting of L2-R2-C2 represent the two oscillators m1-
c1-k1 and m2-c2-k2, respectively. Since CT is in the paral-
lel branch, the voltage across CT represents the interac-
tion force between the two oscillators. The current
flowing through CT equals to the difference between the
currents in the path consisting of L1-R1-C1 and the path
consisting of L2-R2-C2. Thus, it represents the velocity
difference between the two oscillators. Moreover, the
charge variation in CT represents the displacement dif-
ference between the two oscillators. Therefore, one can
easily understand that the capacitor in the electrical sys-
tem can be regarded as a spring coupling the motions of
the two oscillators in the mechanical domain. In addi-
tion, as the value of CT governs the relation between
the variation of the voltage across it and the variation
of the current flowing through it, it can be speculated
that when CT .0, the shunted PZTs would play the role
as a coupling spring with a positive stiffness between
the two oscillators; when CT\0, the equivalent cou-
pling spring has a negative stiffness.

Figure 2. Synthetic circuit for realizing negative capacitance.

Figure 3. Equivalent circuit representation of the 2DOF
oscillating system with capacitance shunting circuit.

Figure 4. Simplified equivalent circuit representation of the
2DOF oscillation system with capacitance shunting circuit.
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2.3. Equivalent coupling spring

In this section, the detailed mathematical derivation is
presented to prove that the shunted PZTs can equiva-

lently play the role as a spring that couples the motions
of the oscillators.

Differentiating equation (3) with respect to time
gives

_vp1 tð Þ=� _vp2 tð Þ=
ip1 tð Þ � ip2 tð Þ
� �

Cn

ð6Þ

Substituting equation (6) into equation (2) provides
the expressions of ip1(t) and ip2(t) in terms of u1(t) and
u2(t)

ip1 tð Þ=
Cn Cn +Cp2

� �
u1 _u1 tð Þ+CnCp1u2 _u2 tð Þ

Cn +Cp1

� �
Cn +Cp2

� �
� Cp1Cp2

ip2 tð Þ=
CnCp2u1 _u1 tð Þ+Cn Cn +Cp1

� �
u2 _u2 tð Þ

Cn +Cp1

� �
Cn +Cp2

� �
� Cp1Cp2

8>>><
>>>: ð7Þ

Substituting equation (7) into equation (6) and then
integrating it with respect to time gives

vp1 tð Þ=� vp2 tð Þ= u1u1 tð Þ � u2u2 tð Þ
Cp1 +Cp2 +Cn

� � ð8Þ

After eliminating vp1(t) and vp2(t) by substituting
equation (8) into equation (1), one obtains

m1€u1 tð Þ+ c1 _u1 tð Þ+ k�1u1 tð Þ+K u1 tð Þ � u2 tð Þð Þ=� m1€y1 tð Þ
m2€u2 tð Þ+ c2 _u2 tð Þ+ k�2u2 tð Þ+K u2 tð Þ � u1 tð Þð Þ=� m2€y2 tð Þ

�
ð9Þ

where k�1 =k1+((u1(u1�u2))=(Cp1+Cp2+Cn)), k�2 =
k2+((u2(u2�u1))=(Cp1+Cp2+Cn)), and K=u1u2=
(Cp1+Cp2+Cn).

As speculated, it can be noted that shunted PZTs act
as an equivalent spring that couples the motions of the
two oscillators. Moreover, the shunted PZTs can also
modify the effective stiffness of the two oscillators (i.e.
k1 ! k�1 or k2 ! k�2 through the adjustment of Cn). It is
worth noting that under a specific condition when
u1 = u2, the shunted PZTs do not affect the effective
stiffnesses of the two oscillators anymore, that is,
k�1 = k1 and k�2 = k2. For the sake of simplicity to com-
pute the eigenvalues of the 2DOF system, by dropping
the damping and excitation terms, equation (9)
becomes

m1€u1 tð Þ+ k1u1 tð Þ+K u1 tð Þ � u2 tð Þð Þ= 0

m2€u2 tð Þ+ k2u2 tð Þ+K u2 tð Þ � u1 tð Þð Þ= 0

�
ð10Þ

One can derive the natural frequencies of this system
as

v2 =
K + k2ð Þm1 + K + k1ð Þm2½ �6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K + k2ð Þm1 + K + k1ð Þm2½ �2 � 4m1m2 k1 + k2ð ÞK + k1k2½ �

q
2m1m2

ð11Þ

Hu et al. (2018b) proposed an internally coupled
metamaterial beam that can produce an additional
band gap. However, it is difficult to produce the cou-
pling spring mechanically. It is demonstrated that the
coupling of piezoelectric transducers through the shunt
capacitance circuit can play the role of a spring that
couples the motions of the associated oscillators. The
piezoelectric coupling through circuit connection
should be fairly easy to achieve in practice. Therefore,
by taking advantage of the shunt capacitance circuit
technique, a piezoelectric metamaterial beam with
capacitance shunting is proposed and investigated in
this section. It is worth mentioning that the equivalent
coupling spring implemented by the shunt capacitance
circuit relates the motions of the two oscillators
through their relative displacements of the base, that is,
(u1(t)� u2(t)). However, the internal coupling intro-
duced by Hu et al. (2018b) coupled the motions of the
two oscillators in terms of the absolute displacements
using a mechanical spring. Therefore, the internal cou-
pling realized by shunt capacitance circuit in the pres-
ent work is similar but not exactly the same as that
proposed by Hu et al. (2018b).

In general, arbitrary values of the masses and stiff-
nesses, that is, m1, k1 and m2, k2 of the two resonators
could be taken. However, since local resonators in
metamaterials are assumed to be uniform in dimen-
sions, that is, of the same mass and stiffness, herein-
after we focus on a specific case with m1 =m2 and
k1 = k2. The natural frequencies presented in equation
(11) can be simplified as

v1 =vn

v2 =vn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2e+ 1
p

�
ð12Þ

where vn =
ffiffiffiffiffiffiffiffiffiffiffiffi
k1=m1

p
and e=K=k is the dimensionless

stiffness of the equivalent coupling spring. It can be
noted that the coupled system has two natural frequen-
cies, as it has 2DOF and also one natural frequency is
independent of the internal coupling spring stiffness.
Moreover, the relation of the two natural frequencies
can be summarized as

v2 ø v1 e ø 0

v2\v1 0.e.� 0:5

�
ð13Þ

It is known that the local resonance of resonators
generate the band gaps in such an elastic metamaterial.
Therefore, by coupling two neighbouring resonators,

Hu et al. 5



one can roughly expect two resonant frequencies that
yields additional band gaps. In fact, the coupled resona-
tors are located at different positions of the beam, and
the dynamics of the host structure may further influence
the dispersion behaviours. As will be demonstrated in
the following section, more than two band gaps will be
generated in the proposed metamaterial beam.

2.4. Stability analysis

It is noteworthy that when the shunt capacitor is
negative, which is a positive feedback system built upon
op-amp circuits, the system may loss stability with
improper parameter selection. The stability of the
coupled dual-resonator system is analysed in this sec-
tion using Jacobi’s matrix. The governing equations of
the system are first transformed into Jacobi’s matrix.
The system is deemed stable when all of the eigenvalues
of the matrix have negative real part. By introducing
the following definition

x1 = u1

x2 = _u1

x3 = u2

x4 = _u2

8>><
>>: ð14Þ

One can rewrite equation (10) in the form as

_x=X xð Þ )

_x1 = x2

_x2 =�
k1

m1

+
K

m1

� �
x1 +

K

m1

x3

_x3 = x4

_x4 =
K

m1

x1 �
k

m1

+
K

m1

� �
x3

8>>>>>>>><
>>>>>>>>:

ð15Þ

The Jacobi’s matrix of A is then obtained as

A=

0 1 0 0

� k1

m1

+
K

m1

� �
0

K

m1

0

0 0 0 1
K

m1

0 � k

m1

+
K

m1

� �
0

2
666664

3
777775 ð16Þ

The four eigenvalues of the matrix are

l1 =

ffiffiffiffiffiffiffiffiffiffi
� k1

m1

r
, l3 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� k1 + 2Kð Þ

m1

s

l2 =�
ffiffiffiffiffiffiffiffiffiffi
� k1

m1

r
, l4 =�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� k1 + 2Kð Þ

m1

s ð17Þ

It can be seen that l1 and l2 must be pure imaginary
numbers. l4 must be a pure imaginary number or a
negative real number. The stability of this system is
dependent on the value of l3. When K\� 0:5k1, l3 is
a positive real number, which means that the system is
unstable. When K.� 0:5k1, l3 is a pure imaginary
number, which indicates that the system is stable.
Therefore, by introducing a dimensionless parameter to
describe the introduced internal coupling stiffness as
aforementioned in equation (12), e should satisfy the
following condition to ensure the stability of this
system

e.� 0:5 ð18Þ

From the perspective of tuning the circuit para-
meter, the value of the NC should satisfy the following
criterion

Cn.� 2u1u2

k1

+Cp1 +Cp2

� �
ð19Þ

3. Band structure analysis

Figure 5 shows the infinitely long model of the pro-
posed piezoelectric metamaterial beam. The local reso-
nators are periodically placed on the host beam with a
constant spacing of d. Each local resonator consists of
a mass m1 and a linear spring of stiffness k1 and is
embedded within a piezoelectric element. The two
neighbouring piezoelectric elements are electrically con-
nected through the aforementioned shunt capacitance
circuit. By tuning the shunt capacitance, the neighbour-
ing two local resonators can be equivalently coupled
through a linear spring with a positive or negative stiff-
ness K. For simplicity, in the following calculation, we
directly develop the model with internal coupling repre-
sented by the coupling spring K. It should be men-
tioned that the stability of the 2DOF oscillating system
has already been analysed in the previous section. The

Figure 5. Infinitely long model of the piezoelectric metamaterial beam with negative capacitance shunting circuit.
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2DOF system can be regarded as one of the basic
components that constitutes the unit cell of the lattice

structure. The other component is the beam section.
Only the 2DOF system component comprises the nega-
tive item which is prone to cause instability. Therefore,
it can be anticipated that as long as the stabilities of the
both components are ensured, the stability of the
assembled system can be guaranteed. Moreover, it
should be noted that the stability of the 2DOF system
can always be ensured as long as the stability criterion
is satisfied, regardless of the base excitations of both
DOFs. After the implementation of the 2DOF system
onto the host beam, the two resonators get an addi-
tional constraint on their relative base excitations, since
their bases, that is, their connection points, are bonded
on the same beam. Hence, due to this additional con-
straint condition, the 2DOF system is in fact less prone
to lose the stability. In other words, the derived stabi-
lity criterion for the 2DOF system must be a sufficient
condition for ensuring the stability of the assembled
metamaterial beam system.

Using Euler–Bernoulli beam theory, the governing
equation of the host beam is given by

EI
∂4w x, tð Þ

∂x4
+ rAcs

∂2w x, tð Þ
∂t2

= 0 ð20Þ

where EI, r, and Acs are the bending stiffness, mass den-
sity, and cross-section area of the host beam, respec-
tively; w(x, t) is the transverse displacement of the host
beam. The solution of w(x, t) is expressed in the form

w(x, t)=W (x)eivt, where W (x) is the vibration ampli-
tude of the beam, and v is the angular frequency and

i=
ffiffiffiffiffiffiffi
�1
p

is the imaginary number. The general solution
of W (x) is

W xð Þ=A cos bxð Þ+B sin bxð Þ+C cosh bxð Þ
+D sinh bxð Þ

ð21Þ

where b4 = rAcsv
2=EI . Each unit cell of the metama-

terial beam consists of two subsections of the host
beam and two local resonators. Therefore, the

vibration amplitudes of the left and right subsections of
the host beam in the jth cell are assumed to be

W l
j xð Þ=

Al
j cos b x� j2dð Þð Þ+Bl

j sin b x� j2dð Þð Þ
+Cl

j cosh b x� j2dð Þð Þ+Dl
j sinh b x� j2dð Þð Þ

" #

W r
j xð Þ=

Ar
j cos b x� j2d � dð Þð Þ+Br

j sin b x� j2d � dð Þð Þ
+Cr

j cosh b x� j2d � dð Þð Þ+Dr
j sinh b x� j2d � dð Þð Þ

" #
8>>>>><
>>>>>:

ð22Þ

The equations of motions for the two local resona-
tors in the jth cell are

m1€ul
j tð Þ+ k1 ul

j tð Þ � wl
j j2d, tð Þ

� 	
+K ul

j tð Þ � wl
j j2d, tð Þ

� 	
� ur

j tð Þ � wr
j j2d + d, tð Þ

� 	h i
= 0

m1€ur
j tð Þ+ k1 ur

j tð Þ � wr
j j2d + d, tð Þ

� 	
+K ur

j tð Þ � wr
j j2d + d, tð Þ

� 	
� ul

j tð Þ � wl
j j2d, tð Þ

� 	� 	
= 0

8<
: ð23Þ

where ul
j(t) and ur

j (t) are the absolute displacements of
the local resonators. The reaction forces of the local
resonators in the jth cell acting onto the host beam can
be calculated as

Fl
j = k W l

j j2dð Þ � Ul
j

� 	
Fr

j = k W r
j j2d + dð Þ � U r

j

� 	
8<
: ð24Þ

Solving equation (23) to represent the displacement
magnitudes of local resonators Ul

j and Ur
j in terms of

W l
j and W r

j , and substituting them into equation (24)
gives

Fl
j = aW l

j j2dð Þ � bW r
j j2d + dð Þ

Fr
j =� bW l

j j2dð Þ+ aW r
j j2d + dð Þ

(
ð25Þ

where
a=(k1m1v2(m1v2 � k1 � K)=((k1 +K � v2m1)

2 � K2))
and b= k1Km1v2=((k1 +K � v2m1)

2 � K2).
Considering the continuity conditions (i.e. deflection,

slope, bending moment, and shear force) at the intersec-
tion between the left and right subsections of the host
beam in the (j21)th cell, one obtains

Kcr
j�1 =Hcl

j�1 ð26Þ

where cr
j�1 = ½A

r
j�1 Br

j�1 Cr
j�1 Dr

j�1 �T and
cl

j�1 = ½Al
j�1 Bl

j�1 Cl
j�1 Dl

j�1 �
T

K=

1 0 1 0

0 1 0 1

�1 0 1 0
a

b3EI
�1 a

b3EI
1

2
664

3
775

H=

cos bdð Þ sin bdð Þ cosh bdð Þ sinh bdð Þ
� sin bdð Þ cos bdð Þ sinh bdð Þ cosh bdð Þ
� cos bdð Þ � sin bdð Þ cosh bdð Þ sinh bdð Þ

sin bdð Þ+ b
b3EI

� 	
� cos bdð Þ sinh bdð Þ+ b

b3EI

� 	
cosh bdð Þ

2
66664

3
77775
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Similarly, the continuity conditions at the intersec-
tion between the (j21)th cell and the jth cell gives

Acl
j +Bcr

j =H0cr
j�1 ð27Þ

where cl
j = ½Al

j Bl
j Cl

j Dl
j � and cr

j�1 =
½Ar

j�1 Br
j�1 Cr

j�1 Dr
j�1 �

A=

1 0 1 0

0 1 0 1

�1 0 1 0
a

b3EI
�1

a

b3EI
1

2
6664

3
7775

B=

0 0 0 0

0 0 0 0

0 0 0 0

� b

b3EI
0 � b

b3EI
0

2
6664

3
7775

H0=

cos bdð Þ sin bdð Þ cosh bdð Þ sinh bdð Þ
� sin bdð Þ cos bdð Þ sinh bdð Þ cosh bdð Þ
� cos bdð Þ � sin bdð Þ cosh bdð Þ sinh bdð Þ
sin bdð Þ � cos bdð Þ sinh bdð Þ cosh bdð Þ

2
664

3
775

Combining equations (26) and (27) and eliminating
cr

j�1 and cr
j , the transfer relation between the two

neighbouring cells can be obtained as

cl
j = A+BK�1H

� ��1
H0 Kð Þ�1

H|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
T

cl
j�1 ð28Þ

Using Bloch theorem, the infinite periodic condition
is applied as

cl
j = eiq2dcl

j�1 ð29Þ

where q is the wavenumber. By inserting equation (28)
into equation (29), we obtain a standard eigenvalue
problem

T� eiq2dI
�� ��= 0 ð30Þ

where T is the transfer matrix, and I is the fourth-order
square unit matrix.

Figure 6 shows the real part of the complex band
structures of the proposed metamaterial beam with dif-
ferent equivalent coupling stiffnesses 2434.9, 1304.7,
2174.5, and 3044.3 N/m (the corresponding e are
20.05, 20.15, 20.25, and 20.35). The geometrical and
material parameters used for the example case study
are listed in Table 1. The x-axis denotes the normalized
wave number (q�= 2dq=p). The band gap of the meta-
material beam without shunt capacitance circuit
(e = 0) is also shown for comparison. It is worth men-
tioning that the real parts of the complex wavenumbers
inside the band gaps are not plotted in Figure 6 to
clearly show the band gap regions. It can be observed
that the introduction of shunt capacitance circuit opens

two more band gaps in the metamaterial beam in the
frequency range of interest. In addition, with the
increase of jej, the first band gap shows a clear trend of
moving towards the lower frequency range. As ana-
lysed in section 2.2, one of the natural frequency of the
standalone 2DOF oscillating sub-system is vn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2e+ 1
p

(equation (17)). When e\0 (i.e. vn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2e+ 1
p

\vn), this
natural frequency qualitatively predicts the location of
the first band gap. Focusing on the value of e being in
the negative regime, with the increase of jej, vn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2e+ 1
p

apparently decreases, thus the first band gap moves
towards the lower frequency range.

For the second and third band gaps, their lower
bounds also move towards a lower frequency, but the
upper bounds remain insensitive to the variation of e.
Moreover, the band gap width of the conventional
band gap has been broadened due to the presence shunt
capacitance circuit. It is well known that the larger iner-
tial force could enhance the width of the band gap (e.g.
with a larger mass in the local resonator (Sun et al.,
2010)). As explained in section 2.2, the presence of the
shunt capacitance circuit is equivalent to a coupling
spring. In this research, the coupling spring is carefully
tuned to exhibit negative stiffness through the manipu-
lation with the shunt capacitance circuit. In the case of
our proposed metamaterial system, the negative stiff-
ness spring gives the system the tendency for larger
dynamic motion (the extreme case is the loss of stabi-
lity); therefore, the inertia force will be enhanced. The
internal shear force of the host beam is cancelled by the
larger inertia forces of the local resonators over a wider
frequency range (Sun et al., 2010), which will eventually
widen the band gap, similar to the effect using larger
masses in the local resonators.

Figure 7 shows the imaginary part of the complex
band structure that reveals the suppression perfor-
mance in the band gaps. The suppression ability is
reflected by the absolute value of the imaginary part. It
can be found that the second band gap demonstrates
the best suppression ability as compared to the other
two band gaps. Comparing the four figures (Figure
7(a) to (d)), the suppression abilities of the first and the
third band gaps increase with the increase of jej.
However, the suppression ability of the second band

Table 1. Geometric and material parameters for the case
study.

Parameters Values

Beam cross-section area, Acs 0.020 3 0.004 m2

Beam mass density, r 7850 kg/m3

Young’s modulus, E 200 3 109 Pa
Adjacent spacing, d 0.150 m
Local resonator mass, m1 0.0272 kg
Local resonator stiffness, k1 8.698 3 103 N/m
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gap decreases accordingly. In addition, it can be noted
that when jej is very small, the suppression abilities of
the first and the third band gaps are very weak (Figure
7(a)). Increasing jej could improve the wave isolation
capability for the first band gap. In addition, the third
band gap could nearly be impossible to be changed for
achieving a significant contribution to vibration sup-
pression. Therefore, it can be anticipated that for a rea-
listic metamaterial model consisting of limited number
of unit cells, it might be difficult for the third band gap
to appear as an effective suppression region in the
transmittance.

To understand the formation mechanism of band
gaps, the displacement distribution of the responses of
the proposed metamaterial with e=� 0:35 is conducted
to reveal the dynamic interactions between the host
beam and the local resonators. For ideal infinitely long
models, the vibration mode of the metamaterial beam
within the band gaps is like a plain beam at the static
equilibrium, which means that waves are restricted for
propagation. Therefore, a semi-infinitely long model is

investigated. The metamaterial beam is under the free-
boundary condition at the left side and extends infi-
nitely towards the right side. The displacement distribu-
tions of the responses are normalized by the vibration
amplitude of the left side of the semi-infinitely long
model. Figure 8 shows the displacement distribution of
responses of the metamaterial beam for points A, B, C,
and D, which are labelled respectively in the band struc-
ture of Figure 7. The black and red solid circles denote
the local resonators.

As the four points are within band gaps, it can be
noted that their displacement responses have a common
feature, that is, the vibration amplitude of the host
beam decays along the direction of wave propagation.
It can be anticipated that since the model is assumed to
be infinitely long towards the right direction, the displa-
cement distribution of responses of the section that is
farther away from the left side will be similar to a plain
beam at the static equilibrium. This means the vibration
energy will be attenuated along the propagation direc-
tion. For point A (Figure 8(a)), the motion of the left-

Figure 6. Real part of complex band structures of the proposed piezoelectric metamaterial beams with different effective coupling
spring stiffnesses: (a) e=� 0:05, (b) e=� 0:15, (c) e=� 0:25, and (d) e=� 0:35.
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side resonator (black solid circle) is in phase with the
motion of the host beam, that is, their motions are
always in the same direction. It is the out-of-phase
motion of the right-side local resonator (red solid circle)
in a unit cell that counteracts with the host beam, thus
generates the first band gap. Here, the out-of-phase
motion means that the resonator and the point of the
beam where the resonator is attached are always mov-
ing in the opposite directions. At point B, which is
within the second band gap, both local resonators have
out-of-phase motions. Therefore, the second band gap
is opened. In addition, as both the local resonators are
contributing to the generation of the second band gap,
the suppression ability of the second band gap is the
best. This may not be easily seen by comparing Figure
7(a) and (b), because for this case e=� 0:35, the first
band gap has been tuned to have a similar suppression
ability as the second band gap (Figure 7(d)). To give a
counter-example of weak suppression ability, Figure
8(d) shows the displacement distribution of responses
of the metamaterial beam for point D which corre-
sponds to the first band gap of the case where

e=� 0:15. It is found that the motion shown in Figure
8(d) is similar to that shown in Figure 8(a). The left-side
local resonator is in phase and the right-side one is out
of phase. However, Figure 8(d) shows that the suppres-
sion ability of the first band gap for this case becomes
much weaker which has already been predicted as
shown in Figure 7(b). Inside the third band gap at point
C, it can be found that the motion of the right-side local
resonator is in phase, while the left-side one becomes
out of phase. This implies that the left-side local resona-
tor becomes the dominant factor for generating the
third band gap. However, by comparing Figure 7(c)
with (a) and (b), it can be seen that though this mechan-
ism also provides the wave-suppression function, the
suppression ability generated by this mechanism is
much weaker as compared to the suppression abilities
generated by the other two mechanisms.

4. Transmittance analysis

Figure 9 shows the finitely long model of the proposed
piezoelectric metamaterial beam. The entire host beam

Figure 7. Imaginary part of complex band structures of the proposed piezoelectric metamaterial beams with different effective
coupling spring stiffnesses: (a) e=� 0:05, (b) e=� 0:15, (c) e=� 0:25, and (d) e=� 0:35.
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has length of L. S pairs of uniform resonators are peri-
odically attached onto the host beam at a constant dis-
tance of d. Each resonator is embedded with a
piezoelectric element and the circuit connections have
been explained in the previous section. One side of the
host beam is clamped to the base, and the other side is
free. The base experiences a harmonic excitation
wb(t)=Wbeivt and the acceleration is controlled at a
constant acceleration acc =� v2Wb. Using Euler–

Bernoulli beam theory, the governing equation of the
host beam is written as

EI
∂4wrel x, tð Þ

∂x4
+ csI

∂5wrel x, tð Þ
∂x4∂t

+ rAcs

∂2wrel x, tð Þ
∂t2

= rAcsacceivt �
XS

j= 1

Fl
bjd x� xl

j

� 	
eivt +Fr

bjd x� xr
j

� 	
eivt

h i
ð31Þ

Figure 8. Mode shapes of semi-infinitely long metamaterial beam: (a), (b), (c), and (d) are for the points labelled A, B, C, and D in
the band structure of Figure 7, respectively.

Figure 9. Finitely long model of the piezoelectric metamaterial beam with shunt capacitance circuit.
In the legend, XCXR is short for X cells and X resonators.
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where wrel(x, t) is the relative transverse displacement
between the beam and the base; cs is the equivalent
strain rate damping constant; Fl

bj and Fr
bj are the reac-

tion forces exerted by the left and right resonators in
the jth cell onto the beam during vibration, respec-
tively; d(x) is the Dirac delta function. The equations of
motion for resonators are

m1
€~ul

j tð Þ+ c1
_~ul

j tð Þ+ k1~ul
j tð Þ+K ~ul

j tð Þ � ~ur
j tð Þ

� 	
=� m1 €w xl

j, t
� 	

m1
€~ur

j tð Þ+ c1
_~ur

j tð Þ+ k1~ur
j tð Þ+K ~ur

j tð Þ � ~ul
j tð Þ

� 	
=� m1 €w xr

j , t
� 	

8<
:

ð32Þ

where c1 is the damping coefficient of the local resona-
tors. ~ul

j(t) and ~ur
j (t) are the displacements of the left and

right resonators in the jth cell relative to the host beam,
respectively. The absolute displacement of the resona-
tor should add w(xj, t)=wrel(x, t)+wb(t) which is the
absolute transverse displacement of the beam. K is the
equivalent coupling spring stiffness due to the imple-
mentation of the shunt capacitance circuit. Using the
modal superposition method, the relative displacement
along the host beam can be written as

wrel x, tð Þ=
X‘

k = 1

fk xð Þhk tð Þ k = 1, 2, 3, . . .ð Þ ð33Þ

where functions fk(x) are the mass normalized mode
shape functions of the plain beam (i.e. without resona-
tors) and functions hk(t) are the modal coordinates.
Substituting equation (33) into equation (31), multiply-
ing by fn(x) and integrating over the beam length from
0 to L, then using the orthogonal conditions

(
R L

0
rAcsfk(x)fn(x)dx= dkn and

R L

0
EI(d4fk(x)=dx4)

fn(x)dx=v2
kdkn), we obtain the modal governing equa-

tion as

€hk tð Þ+ 2zkvk _hk tð Þ+v2
khk tð Þ= rAcsacceivt

ZL

0

fk xð Þdx�
XS

j= 1

Fl
j fk xl

j

� 	
eivt +Fr

j fk xr
j

� 	
eivt

h i ð34Þ

where zk = csIvk=2E is the mechanical damping ratio.
The expression of hk(t) can be derived from equation
(34). Substituting the derived hk(t) into equation (33)
renders the closed-form solution of the relative displa-
cement as

wrel x, tð Þ=
X‘

k = 1

fk xð Þ

rAcsacc

RL
0

fk xð Þdx�
PS

j= 1

Fl
j fk xl

j

� 	
+Fr

j fk xr
j

� 	h i
v2

k � v2 + 2izkvkv
eivt

ð35Þ

From equation (32), we can obtain

~ul
j tð Þ=a1wrel xl

j, t
� 	

+a2wrel xr
j , t

� 	
+a3wb tð Þ

~ur
j tð Þ=a2wrel xl

j, t
� 	

+a1wrel xr
j , t

� 	
+a3wb tð Þ

8<
: ð36Þ

where

a1 =
k1 +K � m1v2 + ivc1ð Þv2

k1 +K � m1v2 + ivc1ð Þ2 � K2

a2 =
Kv2

k1 +K � m1v2 + ivc1ð Þ2 � K2

a3 =a1 +a2

8>>>>>><
>>>>>>:

The reaction forces exerted by the left and right reso-
nators in the jth cell onto the beam are expressed as

f l
j =� c1

_~ul
j tð Þ+ k1~ul

j tð Þ
h i

=� k1 + ivc1ð Þa1wrel xl
j, t

� 	
+a2wrel xr

j , t
� 	

+a3wb tð Þ

f r
j =� c1

_~ur
j tð Þ+ k1~ur

j tð Þ
h i

=� k1 + ivc1ð Þa2wrel xl
j, t

� 	
+a1wrel xr

j , t
� 	

+a3wb tð Þ

8<
: ð37Þ

Substituting equation (35) into equation (37) gives the expression of the force amplitude as

Fl
j =� k1 + ivc1ð Þ

a1 3
P‘

k = 1

fk xl
j

� 	 rAcsacc

RL
0

fk xð Þdx�
PS

h= 1

Fl
h
fk xl

hð Þ+Fr
h
fk xr

hð Þ½ �
v2

k
�v2 + 2izk vk v

+a2 3
P‘

k = 1

fk xr
j

� 	 rAcsacc

RL
0

fk xð Þdx�
PS

h= 1

Fl
h
fk xl

hð Þ+Fr
h
fk xr

hð Þ½ �
v2

k
�v2 + 2izkvk v

+a3
acc

v2

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

Fr
j =� k1 + ivc1ð Þ

a2 3
P‘

k = 1

fk xl
j

� 	 rAcsacc

RL
0

fk xð Þdx�
PS

h= 1

Fl
h
fk xl

hð Þ+Fr
h
fk xr

hð Þ½ �
v2

k
�v2 + 2izk vkv

+a1 3
P‘

k = 1

fk xr
j

� 	 rAcsacc

RL
0

fk xð Þdx�
PS

h= 1

Fl
h
fk xl

hð Þ+Fr
h
fk xr

hð Þ½ �
v2

k
�v2 + 2izk vk v

+a3
acc

v2

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

ð38Þ

Rearrange the 2S reaction force equations, that is, Fl
1, Fl

2,.,Fl
S, Fr

1, Fr
2,.,Fr

S
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aF= b ð39Þ

where

aj, h =

a1 3
P‘

k = 1

fk xl
jð Þfk xl

hð Þ
v2

k
�v2 + 2izk vk v

+a2 3
P‘

k = 1

fk xr
jð Þfk xl

hð Þ
v2

k
�v2 + 2izk vk v

� �
for 1 ł j ł S; 1 ł h ł S

a1 3
P‘

k = 1

fk xl
jð Þfk xr

h�Sð Þ

� 	
v2

k
�v2 + 2izk vk v

+a2 3
P‘

k = 1

fk xr
jð Þfk xr

h�Sð Þ

� 	
v2

k
�v2 + 2izk vk v

0
@

1
A for 1 ł j ł S; S + 1 ł h ł 2S

a2 3
P‘

k = 1

fk xl
j�Sð Þ

� 	
fk xl

hð Þ
v2

k
�v2 + 2izk vk v

+a1 3
P‘

k = 1

fk xr
j�Sð Þ

� 	
fk xl

hð Þ
v2

k
�v2 + 2izk vk v

0
@

1
A for S + 1 ł j ł 2S; 1 ł h ł S

a2 3
P‘

k = 1

fk xl
j�Sð Þ

� 	
fk xr

h�Sð Þ

� 	
v2

k
�v2 + 2izk vk v

+a1 3
P‘

k = 1

fk xr
j�Sð Þ

� 	
fk xr

h�Sð Þ

� 	
v2

k
�v2 + 2izkvk v

0
@

1
A for S + 1 ł j ł 2S; S + 1 ł h ł 2S

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

aj, j =

a1 3
P‘

k = 1

fk xl
jð Þfk xl

jð Þ
v2

k
�v2 + 2izkvk v

+a2 3
P‘

k = 1

fk xr
jð Þfk xl

jð Þ
v2

k
�v2 + 2izkvkv

� 1
k1 + ivc1ð Þ

� �
for 1 ł j ł S

a2 3
P‘

k = 1

fk xl
j�Sð Þ

� 	
fk xr

j�Sð Þ

� 	
v2

k
�v2 + 2izkvkv

+a1 3
P‘

k = 1

fk xr
j�Sð Þ

� 	
fk xr

j�Sð Þ

� 	
v2

k
�v2 + 2izk vk v

� 1
k1 + ivc1ð Þ

0
@

1
A for S + 1 ł j ł 2S

8>>>>><
>>>>>:

bj =

a1 3
P‘

k = 1

fk xl
j

� 	 rAcsacc

RL
0

fk xð Þdx

v2
k
�v2 + 2izk vk v

+a2 3
P‘

k = 1

fk xr
j

� 	 rAcsacc

RL
0

fk xð Þdx

v2
k
�v2 + 2izk vk v

+a3
acc

v2

0
B@

1
CA for 1 ł j ł S

a2 3
P‘

k = 1

fk xl
j�Sð Þ

� 	 rAcsacc

RL
0

fk xð Þdx

v2
k
�v2 + 2izk vkv

+a1 3
P‘

k = 1

fk xr
j�Sð Þ

� 	 rAcsacc

RL
0

fk xð Þdx

v2
k
�v2 + 2izk vk v

+a3
acc

v2

0
B@

1
CA for S + 1 ł j ł 2S

8>>>>>>>>>><
>>>>>>>>>>:

By solving equation (39), the 2S values of Fl
j and Fr

j

can be calculated. Substituting them back into equation
(35), the relative deflection amplitude Wrel(x) can be
obtained. The transmittance of the system is defined
and calculated as

t =
Wrel Lð Þ+Wbj j

Wbj j ð40Þ

For the same parameters listed in Table 1, Figure 10
shows the transmittances of the corresponding finitely
long models with different equivalent coupling stiff-
nesses 2434.9, 1304.7, 2174.5, and 3044.3 N/m (the
corresponding e are 20.05, 20.15, 20.25, and 20.35).
The additional parameters used in the calculation are
as follows: the material damping ratio is 0.006; the
resonator damping ratio is 0.006. It is known that the
transmittance including the suppression region is very
sensitive to the damping (Hu et al., 2017a, 2017b). The
prediction of suppression regions based on the trans-
mittance analysis may show a deviation from the pre-
diction of band gaps based on the band structure
analysis because of the existence of a large damping.
The damping ratios are selected to be relatively small
but still within the reasonable range. The transmittance
of the metamaterial beam without shunt capacitance

circuit (i.e. e= 0) is also provided in the figures for
comparison. In the transmittances, additional suppres-
sion regions appear in the frequency domain responses.
This phenomenon agrees well with the above prediction
from the band structure analysis. It is worth emphasiz-
ing that the band gap width of the metamaterial beam
has been significantly broadened with the implement of
shunt capacitance circuit. Moreover, as speculated
from the complex band structures, there are only two
evident suppression regions (Figure 10(b) to (c)), and
the third band gap that exists in theory does not gener-
ate a practical suppression region as the suppression
ability of this band gap is quite weak. Moreover, when
e is small, even the first suppression region disappears,
for the same reason of the strongly decreased suppres-
sion ability. In addition, the effect of e on the move-
ments of the band gaps revealed by the transmittance
analysis is also found to match the findings from the
band structure analysis.

It is noteworthy that one may mistake the small dip
(marked with a red ellipse in Figure 11(a)) before the
band gap of the metamaterial beam without shunt
capacitance circuit as a part of the band gap range.
Actually, this small dip is not formed by the same
mechanism for the generation of band gaps. Its exis-
tence is due to the damping effect and the fact that the
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system consists of only limited number of cells. If the
damping ratio of the system is reduced and the number
of cells of the system is increased, the small dip will dis-
appear. Thus, it can be seen that unlike the band gaps,
this small dip is not a reliable vibration-suppression
region. In addition, through the same way by reducing
the system damping ratio and further increasing the
number of cells, the aforementioned third band gap
could show up as a vibration-suppression region in the
system transmittance. The result of the proposed piezo-
electric metamaterial beam consisting of 50 cells is pre-
sented in Figure 11(b). Moreover, from Figure 11(b),
the broadband property of the proposed piezoelectric
metamaterial beam is clearly revealed.

5. A further discussion on system stability

The stability analysis of the standalone 2DOF oscillat-
ing sub-system that constitutes the micro-structure of
the proposed metamaterial beam has been presented in

section 2.3, and the stability criterion is provided in
equation (18). The metamaterial beam system is after
all different from and more complicated than the stan-
dalone 2DOF oscillating sub-system. In order to
remove any concern about the applicability of the
derived stability criterion (i.e. equation (18)), a further
discussion is supplemented based on a rigorous study
of the stability of the entire metamaterial beam system.

The stability of a system can be determined based on
the characteristic of its eigenvalues. Eigenvalues having
any non-zero imaginary part indicate that the state
variables (i.e. displacement and velocity) will evolve
without bounds, and the system is thus unstable. The
procedure for determining the stability (i.e. the eigenva-
lues) of the finitely long model is quite straightforward,
and various approaches are available to do the calcula-
tion. For the infinitely long model, since the band struc-
ture analysis is intrinsically an eigenvalue problem
(equation (30)), the eigenvalues of the infinitely long
model can thereby be obtained from its dispersion

Figure 10. Transmittances of the proposed piezoelectric metamaterial beams with different effective coupling spring stiffnesses: (a)
e=� 0:05, (b) e=� 0:15, (c) e=� 0:25, (d) e=� 0:35.
In the legend, XCXR is short for X cells and X resonators.
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relation. Since the determination of the band gap is also
through the band structure analysis, which is finally
transformed into an eigenvalue problem, it is worth
briefly reviewing the principle for band gap determina-
tion first.

The nature of the wavenumber predicts the spatial
characteristics of the wave propagation: a pure real
value solution of wavenumber indicates a travelling
wave; a pure imaginary value solution of wavenumber
infers an evanescent wave whose energy quickly
decreases with the propagation distance and is spatially
concentrated in the vicinity of the source. Hence, by
sweeping v, simultaneously solving for the wavenum-
ber through equation (30) and checking the nature of
the wavenumber, one can determine the band gap
range of the metamaterial beam system. If we regard v

as a given parameter, the corresponding wavenumbers
can be deemed as spatial eigenvalues to be solved.

The stability characteristic of the undamped meta-
material beam system is reflected by the nature of the
temporal eigenvalues (i.e. v) which predicts the tem-
poral characteristics of the wave propagation: a pure
real value solution indicates a time-harmonic wave
which testifies the stability of the system; a solution
having a non-zero imaginary means that the system is
unstable. For the previously used transfer matrix
method (TMM) method in section, the common way is
to sweep v and seek for the solution to the wavenum-
ber. Hu et al. (2018a) proposed an FE-based method
for obtaining the dispersion relation, in which the cal-
culation procedure is reverse: the band structure is
obtained by sweeping the wavenumber and solving for
v. This method is suitable for addressing the stability
analysis problem of the infinitely long model. On the
contrary, the FE-based method is also convenient for

deriving the eigenvalues of the finitely long model.
Therefore, the method presented by Hu et al. (2018a) is
adopted for the determination of the system stability
for both finitely and infinitely long models. The main
procedures are similar to those of the typical FE
method. The details of the method regarding the for-
mulation of the eigenvalue problem are referred to a
study by Hu et al. (2018a). The findings are summar-
ized based on a series of stability analysis with the aid
of the method presented by Hu et al. (2018a).

For the finitely long model, it is found that the criti-
cal e for ensuring the system stability is always smaller
than 20.5. It means that the stability criterion for the
finitely long model comprising the 2DOF oscillating
sub-system is always looser than that of the standalone
2DOF oscillating sub-system presented in section 2 (i.e.
equation (18)). This is physically explainable. The stabi-
lity criterion for the standalone 2DOF oscillating sub-
system is derived based on the assumption that the base
motion of the two DOFs are independent. While, after
the 2DOF oscillating sub-system is implemented onto
the host beam to form the finitely long metamaterial
beam model, the base motion of the two DOFs cannot
be arbitrary and a constraint is yielded from the beam
deflection continuity requisite, which improves the sta-
bility condition. With the increase of the host beam
length by increasing either the number of unit cells or
the lattice constant, the critical e increases, that is, the
system is more prone to lose the stability. Starting from
the aforementioned explanation, this is expected. The
longer host beam becomes softer and easier to bend.
Therefore, the constraint on the base motion of the two
DOFs of the 2DOF oscillating sub-system becomes
looser, and the system is thus more likely to lose its
stability.

Figure 11. (a) Transmittances of the metamaterial beam without internal couplings for different number of cells and system
damping ratios and (b) transmittances of the proposed piezoelectric metamaterial beams consisting of 50 cells.
In the legend, XCXR is short for X cells and X resonators.
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In terms of the infinitely long model, it has been
found that regardless of the parameters of the host
beam and the 2DOF oscillating sub-system, as long as
e is tuned smaller than 20.5, for any given wavenum-
ber, there appears one solution of the temporal eigen-
value (i.e. v) that contains a non-zero imaginary part.
This implies that for the infinitely long model, the sta-
bility criterion is the same as that (equation (18)) of the
standalone 2DOF oscillating sub-system presented in
section 2. In summary, equation (18) (i.e. e.� 0:5) is a
sufficient condition for ensuring the stability of both
finitely and infinitely long models.

6. Verification by FE method

A corresponding FE model of the proposed piezoelec-
tric metamaterial beam is developed as shown in Figure
12(a) using COMSOL to verify the aforementioned
analytical predictions. It should be mentioned that the
metamaterial beam is designed to have symmetry about
the zx plane to prevent the torsional vibration of the
host beam, ensured by applying the symmetric bound-
ary condition in the FE model. In the FE model, the
local resonators are modelled by cantilevers with tip
masses, and the cantilevers are covered by piezoelectric
layers. To emulate the electrodes, the top and bottom
surfaces of the piezoelectric layer are separately applied
with the terminal boundary condition. The circuit con-
nections between the PZTs attached onto two neigh-
bouring resonator beams are implemented using the
electrical circuit module of COMSOL. In the electrical
circuit module, the external voltages are created by
selecting the terminals as the sources. The electrodes
are therefore coupled with the electrical circuit which is
established by adhering to the circuit diagram as shown
in Figure 12(b). The capacitor in the electrical domain

is assigned with a negative value to directly achieve the
NC. It is worth mentioning that the theoretical NC
shunt circuit is a pure inductive one. In applications, on
the contrary, minor resistant load would be included in
the shunt yielding small damping. Besides, consider
that the op-amps have ultra-small noise in applications,
the synthesis of NC would not induce additional noise
(uncertainties) in the system either. The geometric and
material parameters for the FE model are listed in
Table 2.

By applying a displacement excitation to the base, a
frequency domain analysis is performed to obtain the
transmittance by measuring the responses at the tip of
the host beam. Figure 13 shows the FE analysis results
for using different NCs 240.12 pF, 239.38 pF,
238.64 pF, and 237.90 pF, (correspondingly 22.16Cp,
22.12Cp, 22.08Cp, and 22.04Cp). The FE result of the
metamaterial beam without using the shunt capacitance
circuit is also provided for comparison. According to
the expression of the equivalent coupling stiffness, that
is, K = u1u2=(Cp1 +Cp2 +Cn), it can be determined
that when the NC satisfies Cn\� 2Cp, the equivalent
spring stiffness should be negative. It is worth mention-
ing that the decrease of j2Cp +Cnj indicates the
increase of the jKj (i.e. jej). In Figure 13, one can notice
the appearance of the additional vibration-suppression
region for the cases when there exist NC circuits. As
predicted by the analytical analysis, though in theory
there exist three band gaps, only two of them produce
practical wave-suppression effects, which are demon-
strated as suppression regions for the metamaterial
beam with limited number of cells. It can be found that
with the increase of Cn (i.e. the increase of the coupling
stiffness), the additional vibration-suppression region
moves towards the lower frequency range. In addition,
the width of the additional vibration-suppression region

Figure 12. (a) Finite-element model of the proposed piezoelectric metamaterial beam and (b) close-up view of the local resonator.
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becomes narrower. Besides of that, for the vibration-
suppression region around 90 Hz, the width is
increased, but the suppression capacity is reduced with

the increase of Cn due to the fact that the valley depth
becomes shallower. Comparing Figure 13 with Figure
10, the FE analysis results qualitatively agree with the

Table 2. Geometric and material parameters of the finite-element model.

Geometry parameters Material parameters

Host beam length 0.900 m Host beam material density 7850 kg/m3

Host beam width 0.020 m Host beam Young’s modulus 200 3 109 Pa
Host beam thickness 0.004 m Parasitic beam material density 7850 kg/m3

Resonator beam length 0.0425 m Parasitic beam Young’s modulus 200 GPa
Resonator beam width 0.008 m Tip mass material density 7850 kg/m3

Resonator beam thickness 0.001 m Tip mass Young’s modulus 200 3 109 Pa
Tip mass length 0.0120 m Piezoelectric material material PZT-5A
Tip mass width 0.0120 m Piezoelectric material Young’s modulus 138 GPa
Tip mass thickness 0.0120 m Strain coefficient of piezoelectric layer –1.71 3 10–10 C/N
Piezoelectric layer length 0.0425 m Relative permittivity at constant strain 1700
Piezoelectric layer width 0.008 m
Piezoelectric layer thickness 0.0002 m

Figure 13. Finite-element analysis results of the transmittances for the piezoelectric metamaterial beam with different shunting
negative capacitances: (a) Cn = –2.16Cp, (b) Cn = –2.12Cp, (c) Cn = –2.08Cp, and (d) Cn = –2.04Cp.
In the legend, XCXR is short for X cells and X resonators.
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analytical predictions very well. Both the appearance of
the additional suppression region and the effect of the
coupling on the formation of the suppression regions
are observed in the FE analysis results as anticipated. It
should be mentioned that by considering the stability
criterion given by equation (19), the NC Cn cannot be
arbitrarily tuned. If j2Cp +Cnj is tuned to be very
small, jej will exceed 0.5 and the system will lose stabi-
lity. From another point of view, Cn is not suggested to
be tuned to make j2Cp +Cnj very small because for the
case with too small j2Cp +Cnj (e.g. Cn =� 2:04Cp in
Figure 13(d)), the additional suppression region
becomes too narrow for practical use.

7. Conclusion

This article has proposed a piezoelectric metamaterial
beam with shunt capacitance circuit for achieving multi-
ple and tunable band gaps. The underlying mechanism
for creating multiple band gaps in the proposed meta-
material beam is by using the shunt capacitance circuit
technique to generate internal coupling spring between
adjacent local resonators. To ensure the system stability,
criterions for tuning the equivalent coupling stiffness
and the NC are proposed. Both infinitely long and
finite-long models are developed and analytically solved.
The effect of the equivalent coupling stiffness on the
band gaps and corresponding suppression regions is
revealed by both the band structure analysis and the
transmittance analysis. It is found that by changing the
equivalent coupling stiffness (i.e. the NC), the additional
band gap that appears in the low-frequency range can
be controlled. By careful selection of an appropriate
NC, the proposed metamaterial beam can be tuned to
have a broadband vibration-suppression ability. An FE
model has also been developed, and the FE results veri-
fied the analytical findings.
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